12 research outputs found

    Building for a Zero Carbon future: Trade-off between carbon dioxide emissions and primary energy approaches

    Get PDF
    Growing urbanization is driving urban policy makers to adopt sustainable practices aimed to limit the environmental impact of buildings which are responsible for an estimated 36% of climate-changing gas emissions in European cities. In order to meet the ambitious emission reduction targets set by the EU it is essential to develop policy for CO2 emissions saving. This work investigates the regulations of European countries that introduce carbon compliance requirement as implementation of the EPBD such as UK, Ireland, Austria and some Eastern European countries. With reference to the typical consumption pattern of an Italian home, the paper analyses the current limits of primary energy, RES requirements and CO2 emissions, investigating the relations between EPnren and carbon dioxide emissions levels

    Zero Energy Buildings o Zero Emission Buildings?

    No full text
    Nel presente lavoro vengono messi a confronto i principi, attuati nella regolamentazione energetica degli edifici, di limitazione del fabbisogno di energia primaria non rinnovabile e di limitazione della quantità di emissioni di gas serra, tipico quest’ultimo del Regno Unito. Dopo un inquadramento concettuale, gli Autori discutono i risultati di un’applicazione numerica riferentesi ad un’unità abitativa caratterizzata da un modello di consumo energetico annuale tipico della situazione italiana

    Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach

    Get PDF
    Our changing climate is expected to affect ice core records as cold firn progressively transitions to a temperate state. Thus, there is a need to improve our understanding and to further develop quantitative process modeling, to better predict cold firn evolution under a range of climate scenarios. Here we present the application of a distributed, fully coupled energy balance model, to simulate cold firn at the high-alpine glaciated saddle of Colle Gnifetti (Swiss–Italian Alps) over the period 2003–2018. We force the model with high-resolution, long-term, and extensively quality-checked meteorological data measured in the closest vicinity of the firn site, at the highest automatic weather station in Europe (Capanna Margherita, 4560 m a.s.l.). The model incorporates the spatial variability of snow accumulation rates and is calibrated using several partly unpublished high-altitude measurements from the Monte Rosa area. The simulation reveals a very good overall agreement in the comparison with a large archive of firn temperature profiles. Our results show that surface melt over the glaciated saddle is increasing by 3–4 mm w.e. yr−2 depending on the location (29 %–36 % in 16 years), although with large inter-annual variability. Analysis of modeled melt indicates the frequent occurrence of small melt events (<4 mm w.e.), which collectively represent a significant fraction of the melt totals. Modeled firn warming rates at 20 m depth are relatively uniform above 4450 m a.s.l. (0.4–0.5 ∘C per decade). They become highly variable at lower elevations, with a marked dependence on surface aspect and absolute values up to 2.5 times the local rate of atmospheric warming. Our distributed simulation contributes to the understanding of the thermal regime and evolution of a prominent site for alpine ice cores and may support the planning of future core drilling efforts. Moreover, thanks to an extensive archive of measurements available for comparison, we also highlight the possibilities of model improvement most relevant to the investigation of future scenarios, such as the fixed-depth parametrized routine of deep preferential percolation

    Ice thickness distribution of all Swiss glaciers based on extended ground-penetrating radar data and glaciological modeling

    Full text link
    Accurate knowledge of the ice thickness distribution and glacier bed topography is essential for predicting dynamic glacier changes and the future developments of downstream hydrology, which are impacting the energy sector, tourism industry and natural hazard management. Using AIR-ETH, a new helicopter-borne ground-penetrating radar (GPR) platform, we measured the ice thickness of all large and most medium-sized glaciers in the Swiss Alps during the years 2016–20. Most of these had either never or only partially been surveyed before. With this new dataset, 251 glaciers – making up 81% of the glacierized area – are now covered by GPR surveys. For obtaining a comprehensive estimate of the overall glacier ice volume, ice thickness distribution and glacier bed topography, we combined this large amount of data with two independent modeling algorithms. This resulted in new maps of the glacier bed topography with unprecedented accuracy. The total glacier volume in the Swiss Alps was determined to be 58.7 ± 2.5 km3^{3} in the year 2016. By projecting these results based on mass-balance data, we estimated a total ice volume of 52.9 ± 2.7 km3^{3} for the year 2020. Data and modeling results are accessible in the form of the SwissGlacierThickness-R2020 data package

    Ice thickness distribution of all Swiss glaciers based on extended ground-penetrating radar data and glaciological modeling

    No full text
    Accurate knowledge of the ice thickness distribution and glacier bed topography is essential for predicting dynamic glacier changes and the future developments of downstream hydrology, which are impacting the energy sector, tourism industry and natural hazard management. Using AIR-ETH, a new helicopter-borne ground-penetrating radar (GPR) platform, we measured the ice thickness of all large and most medium-sized glaciers in the Swiss Alps during the years 2016–20. Most of these had either never or only partially been surveyed before. With this new dataset, 251 glaciers – making up 81% of the glacierized area – are now covered by GPR surveys. For obtaining a comprehensive estimate of the overall glacier ice volume, ice thickness distribution and glacier bed topography, we combined this large amount of data with two independent modeling algorithms. This resulted in new maps of the glacier bed topography with unprecedented accuracy. The total glacier volume in the Swiss Alps was determined to be 58.7 ± 2.5 km3 in the year 2016. By projecting these results based on mass-balance data, we estimated a total ice volume of 52.9 ± 2.7 km3 for the year 2020. Data and modeling results are accessible in the form of the SwissGlacierThickness-R2020 data package.ISSN:0022-1430ISSN:1727-565

    Ultrafast dynamics of adenine following XUV ionization

    Get PDF
    The dynamics of biologically relevant molecules exposed to ionizing radiation contains many facets and spans several orders of magnitude in time and energy. In the extreme ultraviolet (XUV) spectral range, multi-electronic phenomena and bands of correlated states with inner-valence holes must be accounted for in addition to a plethora of vibrational modes and available dissociation channels. The ability to track changes in charge density and bond length during ultrafast reactions is an important endeavor toward more general abilities to simulate and control photochemical processes, possibly inspired by those that have evolved biologically. By using attosecond XUV pulses extending up to 35 eV and few-femtosecond near-infrared pulses, we have previously time-resolved correlated electronic dynamics and charge migration occurring in the biologically relevant molecule adenine after XUV-induced sudden ionization. Here, using additional experimental data, we comprehensively report on both electronic and vibrational dynamics of this nucleobase in an energy range little explored to date with high temporal resolution. The time-dependent yields of parent and fragment ions in the mass spectra are analyzed to extract exponential time constants and oscillation periods. Together with time-dependent density functional theory and ab-initio Green's function methods, we identify different vibrational and electronic processes. Beyond providing further insights into the XUV-induced dynamics of an important nucleobase, our work demonstrates that yields of specific dissociation outcomes can be influenced by sufficiently well-timed ultrashort pulses, therefore providing a new route for the control of the multi-electronic and dissociative dynamics of a DNA building block

    Real-time observation of a correlation-driven sub 3 fs charge migration in ionised adenine

    No full text
    Sudden ionisation of a relatively large molecule can initiate a correlation-driven process dubbed charge migration, where the electron density distribution is expected to rapidly move along the molecular backbone. Capturing this few-femtosecond or attosecond charge redistribution would represent the real-time observation of electron correlation in a molecule with the enticing prospect of following the energy flow from a single excited electron to the other coupled electrons in the system. Here, we report a time-resolved study of the correlation-driven charge migration process occurring in the nucleic-acid base adenine after ionisation with a 15–35 eV attosecond pulse. We find that the production of intact doubly charged adenine – via a shortly-delayed laser-induced second ionisation event – represents the signature of a charge inflation mechanism resulting from many-body excitation. This conclusion is supported by first-principles time-dependent simulations. These findings may contribute to the control of molecular reactivity at the electronic, few-femtosecond time scale

    Correlation-driven sub-3 fs charge migration in ionised adenine

    No full text
    Sudden ionisation of a relatively large molecule can initiate a correlation-driven process dubbed charge migration, where the electron density distribution is expected to rapidly change. Capturing this few-femtosecond/attosecond charge redistribution represents the real-time observation of the electron correlation in the molecule. So far, there has been no experimental evidence of this process. Here we report on a time-resolved study of the correlation-driven charge migration process occurring in the bio-relevant molecule adenine after ionisation by a 15-35 eV attosecond pulse. We find that, the production of intact doubly charged adenine - via a shortly-delayed laser-induced second ionisation event - represents the signature of a charge inflation mechanism resulting from the many-body excitation. This conclusion is supported by first-principles time-dependent simulations. Our findings opens new important perspectives for the control of the molecular reactivity at the electronic timescale
    corecore